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 A large number of disparate load devices spread along with feeders of 
different structures
• Voltage levels seen by individual loads during a fault event differ
• Control and protection settings of individual dynamic loads can be different

 Current load modeling practices rely on field knowledge and experience 
based on only a limited number of disturbance and operating condition 
scenarios
• Details of individual load devices at distribution levels are unavailable for modeling
• Experience has shown that the CLM parameters carefully selected usually cannot 

achieve satisfactory performance in another fault

Background
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 An optimal parameterization 
scheme for the WECC CLM 
assisted by machine learning (ML) 
techniques including imitation 
learning (IL)  and reinforcement 
learning (RL) based on
• A simulation approach
or
• Unknown or very limited information 

about load devices in distribution 
feeders

Proposed Solution
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 Verify and validate the performance of CLMs parameterized via an RL 
approach by
• Building detailed load models in distribution feeders including protection, 

control, and fault ride-through functions
• Generating training and validation datasets for transmission-originated 

disturbances

 Develop a practical solution to parameterizing CLMs based on real-
world measurements only

 Develop alternative mathematical functions to CLM for modeling 
dynamic load

Technical Approach
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 Problem Statement:
• Optimize CLM parameters for load devices in distribution feeders connected 

to a transmission substation (i.e., point of interconnection or POI) such that 
dynamic contingency analysis can be performed for the transmission network

 Assumptions:
• Availability of details of individual load devices in distribution feeders for 

integrated T&D simulation
or
• Availability of at least timestamped, post-disturbance dynamic responses at the 

POI of distribution feeders

Problem Formulation and Assumptions
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CLM Parameterization Based on Simulated/ 
Measured Trajectories at POI
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 Hybrid EMT-phasor type simulation platform of 
transmission and distribution system
• Transmission system: IEEE 39-bus power system built by using 

ePHASORsim
• Distribution system: modified IEEE 33-node test feeder of 

EMT-type
 10 constant impedance loads, 3 induction motor loads, 2 DERs, 

and 2 Variable Frequency Drives (VFDs)
Detailed modeling of protection and controls: fault ride-through, 

fault-induced delayed voltage recovery (FIDVR), etc. 
• Simulation condition: single-bus and two-bus faults, line outages

 RL-based CLM parameterization based on simulated 
data is ongoing

Technical Approach 1: RL-based CLM Parameterization 
based on Simulated Data
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 Motivation: Unknown details about the distribution load devices
 Challenges:

• Challenge 1: Insufficient measurements under large disturbances
 Solutions: 

Measurement data under both large (e.g., faults) and small disturbances (e.g., load fluctuations)
Data augmentation via a generative model for rare events (large disturbances)

• Challenge 2: Complexity of RL-based CLM parameter tuning
 Solutions: 

 Load decomposition to categories of individual load models in CLM (i.e., Motor, Static, etc.
 Tune parameters of individual models in CLM using the corresponding category data of load

Technical Approach 2: CLM Parameterization 
Based on Measurements Only



Technical Approach 2:  Time-series 
diffusion model: Diffwave

 Inspired by non-equilibrium thermodynamics, a diffusion model defines a Markov 
chain of diffusion steps
• In forward process, Gaussian noise is gradually added
• In reverse process: denoise the data to get real distribution

 The neural network (NN) takes a noised data sample as input and outputs the 
predicted noise.
• Data collection: Multi-state trajectories under different faults
• Training: Noised samples are used to train the NN by optimizing the variational bound on 

negative log-likelihood
 A desired trajectory is also input to the conditioner to implement conditional generation

• Sampling: Pure noise is sampled gradually and denoised with the trained NN to generate 
trajectories with the desired characteristics



Technical Approach 2: Generative Model-
based Dynamic Load Responses

 Additional trajectories were generated by imitating dynamic behaviors of the 
conditioning trajectories in terms of oscillation shape and frequency and 
recovery time
• May present diversity in some characteristics such as postfault recovery time.

Performance Visualization 



Technical Approach 2: Load Decomposition and 
Classification 

 Tuning CLM model is complicated for a large number of parameters
 To reduce the parameter tuning complexity, we proposed to isolate the 

responses corresponding to types of load models, e.g., motor, electronic, 
static
• Load models of different types in a CLM can be tuned separately

 Rather than unsupervised clustering, a pipeline for load decomposition 
and classification is needed that provides a more physically interpretable 
evaluation metric
• A downstream model classifies responses separately according to load types. 



Technical Approach 2: Dynamic Source Separation Network for 
Load Decomposition and Classification 

 Dynamic Source Separation Network (DSSN):  an innovative 
End-to-End framework for decomposition and classification
a) CTSN: a fully Convolutional Time-domain Separation Network for decomposition
b) Res-Time: A Residual model handles a long Time series for classification

 DSSN provides:
 A more physically interpretable method beyond decomposition to supplement the 

commonly-implemented load decomposition
 Taking an aggregate response as input, CTSN first decomposes it into isolated responses 

without labeling. 
 Res-Time is then used to predict the load type of the isolated responses.  



Technical Approach 2: Case Study - Load Decomposition and 
Classification

 Case 1: Reproducing aggregated response using the 
aggregated response of two different loads

Load 1
Load 2

 Case 2: Decomposition of aggregated response of 
ten different loads)

• 4 Constant Impedance Loads
• 3 Induction Motors
• 2 PV DERs
• 1 Variable Frequency Drive

Original aggregated 
voltage profile

Reproduced
aggregated voltage 
profile Decomposed

voltage profiles

Original voltage 
profiles of each load

Decomposed active 
power

Original active power 
of each load



Technical Approach 2: Case Study - Load Decomposition and 
Classification (cont’d)

 Case 3: Aggregate response with Ten mixtures (Classification of decomposed signals)
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Technical Approach 2: CLM Parameterization Based on 
Load Decomposition and Classification (Ongoing)

Static load responses

Decomposed load responses

Electronic load responses

Motor load responses
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Technical Approach 3: Challenges of Conventional Load
Models*

 Inflexibility: Traditional load models may not adapt well to rapidly changing conditions, 
especially with the integration of renewable energy sources.

 Inaccuracy: These models might not accurately represent the actual load profile due to fixed 
parameters, possibly leading to inaccurate simulations and forecasts.

 High Complexity: Some conventional load models involve complex structures and algorithms, 
making them computationally intensive and challenging to manage and analyze.

 Solution: Basic physical principles of the dynamic process are reflected in the mathematical 
functions 

 Approach:  The dynamic power response of the load is directly approximated as the 
superposition of various mathematical functions that produce a dynamic response.

*: Being led by Prof. Jianhui Wang at Southern Methodist University.
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Technical Approach 3: Proposed
Framework*

Diagram of the proposed free-form 
dynamic load model

A framework of the proposed free-form dynamic load model
*: Y. Lin, J. Wang, and M. Yue, “Free-Form Dynamic Load Model Synthesis with Symbolic Regression Based on Sparse 
Dictionary Learning,” accepted by IEEE Transactions on Power Systems, early access.
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 IEEE 39 bus system with a 
WECC composite load 
model connected at Bus 
20 

 Single-phase ground fault, 
two-phase to ground fault, 
and three-phase fault 
performed separately in 
Buses 6, 14 and 21
• Fault applied at 0.15 s 

and cleared at 0.25 s

Original dynamic response of real power P and 
its corresponding wavelet decomposition signals

Estimated 
real power at 
bus 20 under 
different 
fault 
scenarios at 
bus 6.

Estimated 
reactive 
power at bus 
20 under 
different 
fault 
scenarios at 
bus 6.

Technical Approach 3: Case Study
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Technical Approach 3: Case Study (cont’d)

Estimated real power in different fault scenarios with fault at bus 6 
(Polynomial model without stage detection) Estimated real power in different fault scenarios with fault at bus 6 

(Polynomial model with stage detection)
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 Basis Function Selected by sparse dictionary learning

 Parameterization
• The equations can be further simplified as below.
• The total number of model parameters at stages 1, 2, and 3 are 5, 5, and 9, respectively.
• Optimal parameters are further solved using a nonlinear least-squares algorithm.

Technical Approach 3: Case Study (cont’d)
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 Polynomial model does not work well when the dynamic responses in 
different fault scenarios are quite different. 

 Basis Function selected by sparse dictionary learning brings flexibility.
 Comparison with ZIP and artificial neural network (ANN)

 ZIP model has much higher NRMSEs than the proposed model in all scenarios.
 The ANN-based model is more accurate than the proposed method in the scenario 

used to train the model but not robust in the other scenarios

Estimated real power in different 
fault scenarios with fault at bus 21 

(Polynomial model with stage 
detection)

Normalized Root Mean Square Errors (NRMSEs) for Real Power P at Bus 20 Estimated by Different 
Load Models (%)

Technical Approach 3: Case Study (cont’d)
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 Online/offline RL-based parameterization of CLM to minimize the 
deviation of CLM responses from the simulated or measured 
trajectories based on 
• simulated trajectory data or 
• real-world trajectory measurements that are augmented by generative models 

and assisted by measurements under small disturbances (or normal operation)

 Combination and parameterization of mathematical functions for 
load modeling

Next Steps
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